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Let us say that a subspace M of a Banach space X is absolutely proximinal if it
is proximinal and, for each x EX, I,xll can be expressed as a function of d(x, M),
the distance from x to M, and d(O, PM(x)), the distance from the origin to the best
approximant set. Then this functional dependence must be given by a suitable norm
on R 2 This defines a naturally occurring class of subspaces which includes all
LP-summands, all M-ideals, all subspaces with the I !-ball property, and all
absolute subspaces. This paper initiates the study of this class of subspaces.
Amongst other things, we show that:

• The set-valued metric projection onto an absolutely proximinal subspace is
Lipschitz continuous in the Hausdorff metric;

• Absolutely proximinal subspaces are, modulo renorming, the same as
subspaces with the 1!-ball property;

• A subspace is absolutely proximinal if and only if its polar is absolutely
proximinal in the dual space,

We also obtain some numerical estimates for the inner radius of a set of best
approximants. (' 1991 Academic Press. Inc.

O. Il';TRODUCTlO~

In what follows, (X, II· ,I) denotes a Banach space over the field K (R or
C). Given a closed subspace M of X, the set of best approximants in M to
a vector x E X is denoted by PM(X ), that is,

P~(x) = {mE M: Ilx-mll = Ilx+ Mil}.

• Present address: FB Mathematik I. Freie Cniversitiit Berlin, Arnimallec 3, 1000 Berlin 33.
Germany.
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Recall that M is said to be proximinal if Pw(x) is nonempty for all x EX.
One has easily that PM{-x) is a convex, closed, and bounded set and that

P,\I(i.X + m) = i.Pw(x) + m for all x EX, mE M, and i. E K.

For any subspace M of X, we define its metric complement by

M - = {XE X: Ilxll = d(x, M)} = {X:OE P,w(.x)}.

Clearly M is proximinal if and only if M + M.L = X. We always have
M (\ M.L = {O}. In general, M 1 is not convex, let alone a subspace.

We next consider the function

d(O, P\1(x)) = inf{ Ilmli:m E P\f(x)} (XEX).

We are interested in those proximinal subspaces M with the property that
the norm of each vector x E X depends only on the distances d(O, PM(X))
and Ilx + MI. More concretely, a proximinal subspace M of X will be
called absolutely proximinal if there is a real valued function((r, s) defined
for r, s ~ 0 such that

I,xll = I(d(O, P,w(x)), el(x, M)) for all x E X. +
If necessary we emphasize the function f by saying that M is f-proximinal.
Our first task, in Section I, is to find a characterization of those functions
I which can appear in +. We ignore the trivial cases M = {O} and M = X.
It turns out that f must correspond to a lattice norm on R 2-with, of
course,f(O, I) = f( I, 0) = I.

The special case when I is the L-norm on R 2 (i.e., L(a, b) = lai + Ibl)
has already been studied. It was shown in [ II, Corollary 4] that
L-proximinality is equivalent to the 1!-ball property, which was first
defined in [23].

The I !-ball property is in turn a generalization of the notions of the
M-ideal and the L-summand, which have been studied by a number of
authors [2,16]. Let us recall that, given a norm 1·1 on R 2

, a I·i-summand
in X is a complemented subspace M with projection P which satisfies
Ilxll = I(II Pxll, Ilx - Pxll)1 for all x E X. A I· i-ideal is a subspace M whose
polar MO is a I· I·-summand in X·. Here 1·1· is the dual norm of 1·1,
defined by l(r,s)i·=max{lsa+rbl:l(a,b)I=I}. For the M-norm on R 2

(i.e., M(a, b) = max{ lal, Ibl}), we obtain M-summands and M-ideals. An
M-ideal is said to be proper if it is not an M-summand: a typical example
is Co c I x' For the L-norm on R2

, it turns out that every L-ideal is already
an L-summand. (See, for example, [16, Theorem 6.16].)

A comprehensive study of I· I-summands, I· I-ideals, and their natural
generalizations was undertaken in [19] and [20]. The most general sub
spaces considered in [20] are the so-called absolute subspaces, and it was
proved there that they are absolutely proximinal. Absolute subspaces are
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not considered until quite late in this paper, so we postpone their definition
for the time being. Instead, let us just summarize the relationships which
exist between these classes of subspaces:

(i) Every M-ideal is an absolute subspace and has the I ~-ball

property.

(ii) Every L-summand is an absolute subspace and has the I ~-ball
property.

(iii) Every absolute subspace is absolutely proximinal.

(iv) Every subspace with the I ~-ball property is absolutely
proximinal.

It has long been known that M-ideals are proximinal and that the best
approximation mapping PM is well-behaved in a certain sense [14, 17].
(Since L-summands are Chebyshev, i.e., P(x) is always a singleton, their
approximation theoretic behaviour is less interesting.) Later [23, Sect. 1] it
was shown that the good approximation theoretic behaviour of M-ideals is
shared by subspaces with only the 1~-ball property.

In this paper, we show that these properties are also shared by
absolutely proximinal subspaces. In Section 2 we establish the basic
properties of absolutely proximinal subspaces, including the fact that their
best approximation operator is Lipschitz continuous, and other results
stated in the abstract.

In Section 3 we show that absolutely proximinal subspaces of complex
Banach spaces are far more numerous than previously thought. More
precisely, we show that every complex Banach space has the 1~-ball

property (without being an M-ideal or an L-summand) in some superspace.
In Section 4 we introduce a related but very weak property which we

find useful for studying the existence of interior points in PM(X). Specifi
cally, we obtain some estimates for the inner radius of the set of best
approximants. We also show that a Banach space which is absolutely
proximinal in its second dual must already have the I1-ball property in its
second dual.

Part of this work was done while the fourth author was visiting the
University of Granada. He is grateful to the Department of Mathematical
Analysis for its hospitality and support during that period.

1. j-PROXIMINAL, I·I-PROXIMINAL, AND

U-PROXIMINAL SUBSPACES

Here we determine which functions f can appear in the definition of
.f-proximinality and show that absolutely proximinal subspaces form a
subclass of the previously studied U-proximinal subspaces.



ABSOLL;TELY PROXIMIl'AL SUBSPACES 49

LEMMA 1.1. Let M he a nontrivial proximinal subspace of X, and let
rI' r2, .1', t be nonnegative real numbers Il'ith r I < r2 and .I' :::; t. Then there are
X I ,X2,Y in X such that

(i) Ily+MII =.1',

(ii) :Ix i + Mil = IIx2 + Mil = .1', d(O, PH(xd) = r l ,

d(O, P,\/(X2)) = r2, IXI II < Ilx2 11.

Proof Let X o E X be such that IIxo+ Mil = s, choose moE PM(XO)' and
write x = Xo - mo. Also fix mE M with Ilmil = 1 and define

rp(i.) = d().m, PH(x)), l{t(i.) = Ilx - i.mll- .1', for all i. ~ O.

It can be easily verified that <{J, '" are nonnegative, continuous, unbounded
convex functions satisfying rp(O) = l{t(O) = O. Moreover rp(i.) = 0 if and only
if i.m E PM(X), if and only if l{tU) = o. So if we writei.o= max {i. ~ 0: rp(.-t) = O}
=max{i.~O:l{t(i.)=O}, then rp and l{t arc strictly increasing functions for
i. ~ ;'0' Thus we can find i· 1 , i· 2 , JA ~ i.o satisfying

l{t(JA) = t - .1',

Finally we take y = x - JAm, XI = X - AI m, X 2 = x - A2m. I

LEMMA 1.2. Let M he an absolutely proximinal subspace of X. Then
there is a unique function f such that M is f-proximinal. Moreover f is strictly
increasing and continuous in the first variable.

Proof For r, s ~ 0 we can use Lemma 1.I to find an x E X such that
d(O, PM(X)) = r and Ix + Mil = s. Thenf(r, s) is uniquely determined by the
equation

f(r, .1') = f(d(O, PH(x)), lix + Mil) = Ilxll.

In the notation of Lemma 1.1 we have

so r f-+ f(r, .1') is a strictly increasing function. In view of the first part of the
same lemma, the range of this function is an interval, i.e., has no discon
tinuities. I

It is clear that M is an f-proximinal subspace of X if and only if M is
an .f-proximinal subspace of M + Kx for all x in X. In particular,
f-proximinality of M is preserved when we replace X by a closed subspace
of X containing M. Also, f-proximinality is obviously preserved when we
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pass to the real restriction of a complex space. Our next goal is to prove
that .f-proximinality is also preserved under the formation of quotient
spaces.

LEMMA 1.3. Let M be an absolutely proximinal subspace of X and N a
closed subspace of M. Let Q: X -+ XI N denote the quotient mapping. Then,
for any x in X, PQ(!fl(Q(X)) is the closure (in XIN) ofQ(PI\,f(x)),

Proof We have easily IIQ(x)+Q(M)II=llx+MII, so Q(PM(x))£
PQ(Mj(Q(X)) for all XEX. Since PQ(M)(Q(X)) is closed, it only remains to
prove that every element of this set is in the closure of Q(PM(x)). After
translation we can suppose that the given element is zero. So we assume
that OEPQ(Ml(Q(X)), that is, Ilx+MII=llx+NII, and we must find
elements in N arbitrarily close to PM(x). Let (nd be a sequence in N such
that Ilx-nkl: -+ Ilx+Mli. Then f(d(O, PI\,f(x-nd), lix+MII)-+ Ilx+MII,
where f is the function given by Lemma 1.2. Choose m in PM( x) and note
that

Ilx+MII = Ix-mil =f(d(O, PM(x-m)), Ilx+MII)=f(O, l;x+MII)·

According to Lemma 1.2, the function n--+f(r, Ilx+MII) (defined for r~O)
has a continuous inverse. So we obtain d(O, PM(X - nd) -+ 0, that is,
d(n k , P~f(X)) -+ 0, as required. I

Remark 1.4. The assertion of the above lemma is no longer true if we
assume M to be only a proximinal subspace of X, as the following example
shows. Let X = II,

M={XEX:X I + n~2 (1- ~)x,,=O},

N={XEM:J2 X,,=0},

and let x E II be given by 2x1= X2 = 1 and Xn = 0 for n ~ 3. It is not difficult
to verify that Ilx + Mil = Ilx + Nil = 1, and so 0 E PQ(M)(Q(X)), whereas
d(O, Q(PM(x))) = 1. Thus the best approximation mapping onto an
absolutely proximinal subspace behaves particularly well under quotients.
Note also that the assertion of the above lemma is clearly true when M and
N are both proximinal subspaces. The point is that N need not be
proximinal in Lemma 1.3.

PROPOSITION 1.5. Let M be an f-proximinal subspace oj' X and N a
closed suhspace of M. Then MIN is an Fproximinal subspace oj' X/N.



ABSOLUTELY PROXIMIl'AL SUBSPACES 51

Proof Let Q denote again the quotient mapping from X onto X/No For
XE X we have

IIQ(x)11 = inf f(d(O, P.\f(x+n)), Ilx+ MI,)
nE N

=f(inf{ d(O, P.\f(x + n)):n EN}, Ilx + Mil)

= f(inf{ 11m + nll:m E P.\f(x), n EN}, Ix + Mil)

=f(d(O, Q(PM(x))), Ilx+ Mil),

where we have used Lemma 1.2 for the second equality and the rest is
obvious. We have already noted that ,Ix +Mil = IIQ(x) +Q(M)II. An
application of Lemma 1.3 then yields d(O, Q(Pw('\"))) = d(O, PQ(M)( Q(x))).
Thus we have, for all x E X,

IIQ(x)11 = f(d(O, PQIMI(Q(X))), IIQ(x) + Q(M)II),

as required. I
The way is now prepared for the determination of those functions f for

which there is a nontrivial f-proximinal subspace. By absolute norm we
mean a norm (r, s) f--+ I(r, s)1 on R2 satisfying

l(r,s)I=I(lrl, Isl)1 (Vr,sER) and 1(1,0)1 = 1(0, 1)1 = 1.

PROPOSITION 1.6. Let f be a real valued function defined on the positive
quadrant of R2

• Then the following statements are equivalent.

(i) There is a Banach space X with a nontrivial f-proximinal sub
space M.

(ii) f is the restriction to the positive quadrant of some absolute norm
1·1, for which (0, 1) is an extreme point of the unit ball of (R 2

, 1·1).

Proof (i) = (ii) Without loss of generality, we may suppose that the
scalars are real. Passing to a quotient space, Proposition 1.5 allows us to
assume that M is one-dimensional. Choose x E M with II x II = I and y E X
with d(y, M) = I. Then PM(Y) must be an interval of the form CA., /l] x =
{Ctx:;. ::;; ex ::;; /l }. Translating y parallel to M, we may suppose that this
interval is symmetric about the origin; i.e., that -;. = /l =n* for some
n* ~ 0. For any (Ct, P) E R 2, we have

d(exx + py, M) = 1m
and

d(O, PM(rJ.x + py)) = d( - CtX, [ -IPI n*, IPI n*] x)

= (I(XI-IPI n*)+.
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Thus Uax+fJyll=f((lal-lfJln*)+,lfJI) depends only on lal and IfJI.
Hence the formula 1(~,fJ)I=II(lal+ll*I/JI)x+fJYII defines an absolute
norm on R2

. (Note that 1(0, 1)1 = I because -n*xE P-\{(y).) Clearly
f(a, fJ) = I(~, fJ)1 for all (~, In in the positive quadrant.

Finally, we note that, for allzEX, Ilz!1 =d(z, lI1)¢>d(O, P-\{(.:))=O. Thus
I(a, fJ)1 = IfJI ¢>:x = 0, i.e., (0, I) is an extreme point of (R 2

, I·[).

(ii)=(i) Just take X=R 2 with the norm 1·1, and M=REf){O}. I

It is pertinent to observe that absolutely proximinal subspaces form a
subclass of the U-proximinal subspaces studied by Lau [15]. Recall that a
subspace M of X is said to be U-proximinal if there is a function
e: R + -+ R +, with c(p) -+ 0 as p -+ 0, such that (1 + p) B n (B + M) ~
B + e(p)( B n M), where B = B(O, I) denotes the unit ball of X. This
property was later rediscovered in [9, Sect. 4].

LEMMA 1.7. Let 1·1 be any absolute norm on R2, for which (0, I) is an
extreme point of the unit ball. Then

e(p) = max L+~_ p: I(a, P)I ~ I+ p, fJ ~ I} -+ 0 as p -+ o.

Proof Let a(p) = max {"c I(a, I - vt{;)1 ~ 1 + p}. Then a(p) -+ 0 as
p -+ 0; for otherwise we could find a'! 0 with I(a, 1 - ~)I ~ 1+p for all
sufficiently small p. But then 1(:x, 1)1 ~ 1, contrary to hypothesis.

It follows that :Xl(p)=max{a(p),p(l+p)/(p+~)}-+O as p-+O. It
suffices now to show that e(p) ~ :x I (p).

Given (:x, P) as specified above. we consider two cases. First, suppose
that P ~ I -~. Then :xp/(1 + p - P) ~ p(1 + p)/(p +~) ~ :xt(p), as
required. In the second case, fJ ~ I - JP, we have

I(a, 1- ~)I ~ I(:x, P)I ~ 1+ p,

and so a ~ a(p). Then

:xp ~(p) p

I P ~ I 1~al(p),
+p- +p-

and the proof is complete. I

PROPOSITION 1.8. Every absolutely proximinal subspace is U-proximinal.

Proof Let M be I'I-proximinal in X, and define f-(p) as in Lemma 1.7.
Given x in (I +p) Bn(B+ M), let us put a=d(O, P-\{(x)) and p=d(x, M).
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Then I((X, fJ)1 :( 1 + p and fJ:( 1. Given <5 > 0, we can find mE PM(x) such
that Ilm!1 < (X + J. Put m= ),m, where i, = p/( 1+ p - fJ) E [0, 1]. Then

lim-xii = Ili,(m-x)- (l-i,)xl

:( AIi + (1 - A) I((X, In I

:( i,fJ + (1 - i,)( I + p)

=1,

and Ilmil =i,llmll <p(~+b)/(1+p-fJ):(c(p)+<5. Hence x=x-m+mE
B + (c(p) + b)(B (\ M). Choosing J sensibly as a function of p, we see that
M is U-proximinal. I

Let H(X) denote the family of all bounded, closed, convex subsets of the
Banach space X. A metric d can be defined on H(X) by

d(A, B) = sup({ d(a, B):a E A} u {d(b, A):b E B}) (A, BE H(X)).

Lau [15] showed that every U-proximinal subspace is actually proximinal
and that the metric projection P: X -+ H(M) is continuous (and so, by
[21], admits a continuous selection). The same is therefore true for
absolutely proximinal subspaces. Later we give a direct proof of a stronger
result: namely, the metric projection onto an absolutely proximinal sub
space is Lipschitz continuous. This was already known for subspaces with
the I ~-ball property [23]. Combining this with some results from [15]
and [18], we see that not every U-proximinal subspace is absolutely
proximinal.

2. PRINCIPAL PROPERTIES OF ABSOLUTELY

PROXIMINAL SUBSPACES

Let us recall the following concepts, from [1] and [19], which are useful
in our discussion of absolutely proximinal subspaces. The numerical range
ideas underlying the following definitions can be found, for example, in [4]
and [5].

Let u be a fixed norm-one element in the Banach space X. We denote by
D( X, u) (or simply D( u)) the state space of u; that is,

D(u)= {fEX*: 'If II =f(u)= I}.

Then D(u) is a nonempty, convex, and II'*-compact subset of X*. For x E X
we write

V(u, x) = {f(X):fE D(u)},
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which is a compact convex subset of K. One could refer to V(u, x) as the
numerical range of x with respect to u. We also write

MU(x)=max{rei.: i.E V(u,x)};

it is well known [8, Chap. V] that

. I
MU(x) = 11m - (Ilu +axll-l).

, loa

Finally, if M is a nonzero subspace of X we define a seminorm PM on X
by

PM(X) = sup {MU(x): UE M, Ilull = I}.

Since V(A.u, x) = A:V(U, x) whenever 1,1.1 = I, it is easily verified that PM is a
seminorm. Note that p ...Am) = Ilmil for all mEM and that PM(X)~ 'ixil
on X.

Given an absolute norm 1·1 on R 2
, we define two indices n=n(I·I) and

n* = n*( I·[) as follows:

I
. 1(1, a)l- I

n = 1m ~~-'----

, 10 ,,1.

n* = max {:x : I(:x, I) I = 1}.

It turns out that n*(I·I)=n(I·I*).
We say that 1·[ is of type I if (1,0) is not a smooth point of the unit ball

of (R 2
, I·'), of type 2 if (1,0) is both an extreme point and a smooth point

of the unit ball, and of type 00 if (1,0) is not an extreme point of the unit
ball. Similarly we define the cotype of [·1 according to the behaviour of
(0, 1). The analogy with the L I, L 2

, and L ex unit balls should be clear.
Note that n > 0 iff I·j has type I, n* > 0 iff 1·1 has cotype 00, and n + n* ~ I
always. Proposition 1.6 asserts that a nontrivial I·[-proximinal subspace
exists if and only if the cotype of 1·1 is not x.

The following lemma follows from the above definitions via some
calculations with norm derivatives.

LEMMA 2.1. Let M be a I·[-proximinal subspace of X and u E M with
lIull = 1. Then

for all XE X.
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Proof Let us fix x E X. For yEPM(X), the function
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G,(a) = 1(llu + aYII, ad(x, M))I

is convex, so we have

(a>O)

. {I } . G,(a) - I
Inf - (G y( ~) - I ) :a >° = lim' .

a . .10 a

By [19, Lemmas 1.6 and 1.5] the limit on the right-hand side equals

MU(y)+nd(x, M).

Now, from the definition of I·I-proximinality we have

MU(x) = infU(liu + axll-l ):a>o}

-' f{' f{I(IIu+aY II,ad(X,M))I-I. P ()}. o}
-In In .YE MX .a>

a

.f{' f{G ..(tX)-I} }=In In . a :a>O :yEPM(X)

= inf{ MU(,v) + nd(x, M):y E PM(X)},

as required. I

The next lemma follows from a routine application of the Hahn-Banach
and Bishop-Phelps Theorems.

LEMMA 2.2. Let M be a proximinal subspace of X and let x E X, e >°be
such that e < d(O, P.w(x)). Then there are elements u in the unit sphere of M
and gED(M, u) such that reg(y)~efor all YEPM(X).

Proof Let {) be such that e < {) < d(0, PM( x)). Then the open ball in M
centred at the origin with radius {) does not meet the set PM(X), so we can
use the Hahn-Banach Separation Theorem to find an f E Mft, with Ilfll = I
such that

{) = sup{ ref(m):m E M, Ilmil < {)}

~ inf{re f( y ) : y E P.w( x) }.

Using the Bishop-Phelps Theorem [5, Sect. 16] we obtain a u in the unit
sphere of M and g E D(M, u) such that II g - fll < ({) - r. )/k, where
k = sup{ lIyll: yEPM(X)}, Then, for all y in P M(X) we have

reg(y)~<5- !lg-fIIIIYII >e,

as required. I
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The following is our fundamental result about absolutely proximinal
subspaces. Its technical nature is forgiven in view of its consequences.

THEOREM 2.3. Let M he a I·I-proximinal subspace of X. Then

max{PM(X)' n Ilx + Mil} =d(O, P.\1(x)) +n Ilx+ Mil

for all XE X. Equivalently, d(O, P M(X)) = (P.\1(x) - nd(x, M)) +.

Proof First suppose that °i PM(x), and choose e with 0< e<
d(O, PM(x)). Let u,g be given by Lemma 2.2. By Lemma 2.1 we have
M"(x)~e+nllx+MII, whence PM(x)~G+nllx+MII. Now letting £-+

d(O, P.\Ax)), we obtain

max{PM(x), n Ilx + Mil} ~ d(O, P.\1(x)) + n I,x + Mil.

This inequality is clear when °E PM(X).
For the reverse inequality, let us fix a norm-one element u in M. Using

the fact that M"(y)~ IIYII for all YEP.\1(X), Lemma 2.1 yields M"(x)~

IIYII +n Ilx+MII for all yEPw(X), whence

M"(x)~d(O, PM(x))+n Ilx+Mil.

The rest is clear. I

THEOREM 2.4. Let M be a I·I-proximinal suhspace of X. Then

d(PM(x), PMCv))~(1+n) I;x- yll

for all x, y E X.

Proof Let x, Y E X be given, and choose a E P M(X). It clearly suffices to
show that d(a, P.\1(y))~(1+n) Ilx- YII. If y-aEM.l then aEPM(Y) and
there is nothing to prove. If y - a ¢ M 1 then, using Theorem 2.3 twice, we
have

d(a, PM(y))+nd(y, M)=p.\1(y-a)

~ P.w(y - x) + PM(X - a)

~ Ilx- YII +nd(x-a, M)

= Ilx - YII + nd(x, M)

~ (1 + n) Ilx - .vII + nd(y, M).

Thus d(a, PM(y))~(1 +n) Ilx- yll, as required. I
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COROLLARY 2.5. If the absolute norm 1·1 is not of type I, then every
I·I-proximinal subspace is a Chebyshev I· I-summand. In particular, if M is a
proximinal subspace of a Banach space X satisfvinR

IlxV = d(O, PM(xW + d(x, M)P

for all x E X and some p with I < p < x, then M is all Lf'-summand of x.
Pro(~t: We must have n = °for norms which are not of type I. Thus

Theorem 2.3 becomes PM(.X-) = d(O, P\f(x)) for all x E X. Then M 1- =
{x E X:PM(X) = O} is a subspace of X, so X = M g:; M -. This shows that M
is a Chebyshev subspace, and its (single-valued) metric projection must be
a I· I-projection. I

The second part of Corollary 2.5 improves [19, Corollary 1.9], where it
was already assumed that M was a Chebyshev subspace of X.

COROLLARY 2.6. Let I·! be a type 1 ahsolute norm and M a
I'I-proximinal subspace of X. Define a nell' norm on X by

II xiii = max{p.w(x), 11 Ilx + Mil}.

Then III .11 1 is an equivalent norm on X and M has the 1~-hall property in
(X, 111.11'). Moreover Illmlll = Imll for all mE M.

Proof Let d'(x, M) and P:w(.x-) denote the new distances and best
approximant sets under III '111. Clearly

d'(x, M) = inf (d(m, PM(x))+ nd(x, M)) = nd(x, M),
m

and so

mE P:\f(x) <:> d(m, P\f(.X-)) + nd(x, M) = d'(x, M)

<:> m E PM(x).

Thus Illxlll = d(O, P:W(x)) + d'(x, M), as required. I
By Corollary 2.5, if the absolute norm is not of type I, then every

I'I-proximinal subspace is complemented. It is clear that every comple
mented subspace satisfies the I ~-ball property under renorming. So we
have

PROPOSITION 2.7. Let M be an absolurel,v proximinal subspace of X.
Then X can he equivalently renormed so as to have M satisfy the 1~-hall

property.
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A renorming process in the direction opposite to that of Proposition 2.7
is restricted to type 1 absolute norms, in view of Corollary 2.5. Under this
restriction, we show below that such a renorming process is always
possible. It was proved in [19, Lemma 1.1 0] that, given an absolute norm
1·1, there is a unique absolute norm 1·1 I which satisfies

I(r, s)1 = I(r + ns, s)1 +

for all r, s ~ O. It is easy to see that there is a unique absolute norm 1·1
for which

I(r + n*s, s)1 = I(r, s)1

whenever r, s ~ O. We note that the unit ball of (R 2
, 1·1 +) is closer to the

unit ball of (R 2
, M), whereas the unit ball of (R 2

, 1·1-) is closer to the unit
ball of (R 2,L).

PROPOSITION 2.8. Let M be a closed subspace of X satisfying the 1t-ball
property and let 1·1 be an absolute norm of type 1 and not of cotype oc;.

Define III ·111 on X by

Illxlll = 1(llxll , ~d(x, M))/ +

Then 111·111 is an equivalent norm on X and M is a I·I-proximinal subspace of
(X, 111·111).

The proof of this is quite similar to that of Corollary 2.6.
Propositions 2.7 and 2.8 show that the class of absolutely proximinal

subspaces is essentially the same as the class of subspaces with the
1t-ball property. We note here that the class of U-proximinal subspaces is
strictly larger. For example, let X be a uniformly convex space and M an
uncomplemented subspace. Then M is U-proximinal [15, Proposition 4.3]
and Chebyshev in X. According to [18, Corollary 2], its metric projection
cannot be Lipschitz continuous. Theorem 2.4 then shows that M is not
absolutely proximinal. This argument remains valid under any renorming
of X which preserves the norm on M and the (singleton) sets of best
approximants.

By taking into account the existence of uncomplemented subspaces
satisfying the 1t-ball property we have that, in view of Corollary 2.5 and
Proposition 2.8, every I·I-proximinal subspace is complemented if and only
if the absolute norm 1·1 is not of type 1.

If we apply consecutively the renorming processes in Corollary 2.6 and
Proposition 2.8 we obtain the following result which includes both results
as particular cases.
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THEOREM 2.9. Let 1·11 and I ·12 be type 1 absolute norms which are not

of cotype 00 and let M be a I·II-proximinal subspace of X. Define 11I·111 on

X by
n

II!xlli = I(p,w(x), ---.!. d(x, M))I;.
n2

Then III· :11 is an equivalent norm on X and M is a 1·12-proximinal subspace

in (X, II '111).

Recall [20, Sect. I] that M is an absolute subspace of X if and only if
MO is an absolute subspace of X·. Similarly, M satisfies the 14-ball
property in X if and only if MO satisfies it in X· [24, Theorem 3]. We
conclude our discussion of absolutely proximinal subspaces by showing
that this class has the same desirable stability property. The first step in
this direction is the following proposition which shows that the norm on a
Banach space X which contains a I·[-proximinal subspace M can be
recovered from the seminorms PM and d( ., M).

PROPOSITION 2.10. Let M be a I'I-proximinal subspace of X. Then

Ixll=I(PM(x),d(x,M))I+ forall xEX.

In particular, if M has the 14-ball property in X, then llxll =

max{PM(x), d(x, M)} for all XE X.

Proof Suppose that M is a I'I-proximinal subspace of X and that
XEX.

If PM(X) ~ nd(x, M), then, using Theorem 2.3,

I(p,w(x), d(x, M))I + = J(d(O, P,w(x)) + nd(x, M), d(x, M))I +

= l(d(O, PM(x)), d(x, M))I

= Ilxll·

If, on the other hand, PM(X) < nd(x, M), then Theorem 2.3 tells us that
OEPM(X). Since n·(I·I+)~n(I·I), we have I(a,b)!+=h whenever°~ a ~ nb. In particular,

I(p M(X), d(x, M))I + = d(x, M) = Ilxll,
as required. I

The proof of the next lemma requires another definition. We recall [10]
that the duality mapping D is said to be (norm-to-norm) upper semi
continuous at some point u in the unit sphere of X if

\if, >0,3£5 >O:VYE X

(IYII = I andly-ull <(5)=>D(y)cD(u)+B(O,f,).
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LEMMA 2.11. Let u E X with Ilull = I. If Ku is an ahsolutely proximinal
suhspace of X, then the duality mappinl( is upper semicontinuous at u.

Proo! Note that N = {x EX: V(u, x) = {O} } is a closed subspace of X.
We let Y be the completion of the quotient space X/N with respect to the
norm

'Ix + NI = max {ii.1 :i. E V(u, x)}.

This norm will not generally agree with the usual quotient norm on X/No
It is easy to verify that Ilu+NII=1 and that max{li.l:i.EV(u+N,y)}=
IIYII for all yE Y. By [I, Corollary 5.9] the duality mapping on Y is norm
to-norm upper semicontinuous at u + N. Let us consider the Banach space
Y x XIM, where M = Ku, equipped with the norm given by

II(y, x+ M)il = 1(llyll, d(x, M))I '.

(Here 1·1 is the absolute norm under which M is I·I-proximinal.)
A straightforward argument [10, Example 3.1] shows that the upper
semicontinuity of the duality mapping on Y at u + N implies the upper
semicontinuity of the duality mapping on Yx X/M at (u + N, 0).

Finally, by Proposition 2.10 the mapping x f---+ (x + N, x + M) is an
isometric linear imbedding of X into Y x X/M which sends u to (u + N, 0).
The conclusion now follows from the fact that upper semicontinuity of
duality mappings is preserved when we pass to subspaces. I

Observe that the full strength of absolute proximinality was not used in
the previous proof, but only in the conclusion of Lemma 2.10. This
property is studied in greater detail in Section 4.

THEOREM 2.12. A subspace of a Banach space is an absolutely
proximinal subspace if and only if its polar is absolutely proximinal in the
dual space. More precisely, M is I·I-proximinal in X if and only if MO is
1·1 *- -proximinal in X*.

Proo! (=) Let M be a I·I-proximinal subspace of X. If the norm I·'
is not of type I, Corollary 2.5 tells us that M is a I. I-summand. Then
MO is a 1·1 *-summand and so by [20, Theorem 2.1] must be a
1·1 * -proximinal subspace of X*.

Now assume that 1·1 is of type 1. An application of Corollary 2.6 tells us
that M satisfies the 1~-ball property when X is renormed by

1:lxll = max{p.w(x), n lix + Mil}·

We have easily Illmlil = Ilmil for all mE M and Illx + Mill = n Ilx + Mil for all
x E X. It is not difficult to check that if we now apply Proposition 2.8 to the
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Banach space (X, 111·111), in order to turn M into a 1·I-proximinaI subspace.
we get back the original norm 11·11. This means that 1·11 and 111·11 are also
related by the identity,

Ilxl, = !(IIIXII, ~ Illx+ MIII)!-

We can now apply the dualization procedure used in the proof of
[19, Theorem 2.3(b l], thereby obtaining for the dual norms of il'l! and
II ·11 the following relation:

VfEX*.

This equality implies that the best approximant set for fin M O with respect
to the norm II· 'I is the same as that for the norm II'l, i.e., that p.wo has
an unambiguous meaning. Then we have clearly

Il.n ~ inf{ I(n II gill, 111/ - gil )1 t * :gE Pw0(f)}

= l(ndl(O, PM0(f)), Illf + MOil )1 + *,

where d 1 denotes the distance in the norm 11·11. From the identity
Ilx + Mill = n Ilx + Mil and the canonical identification of (X/ M)* with
M O, we obtain II:gll! = (1/n) Ilgll for all gEMO, so ndl(O'P,~fo(f))=

d(O, PM0(f)). An analogous argument shows that 1,If + MOil: = 'If + MOil,
in view of the fact that IImlll = 'Imll for all mE M. Then the last inequality
reads IlfII ~ l(d(O, Pw0(f)), 11/+ MOII)I ! *. An elementary calculation with
absolute norms shows that! ·1 f * = 1·1 *-. So we have

lI.n ~ l(d(O, P~fO(f))t Ilf + MOII)I * .

We must prove that this inequality is in fact an equality. We clearly have

I(n Illglll, 111/+gl,lll*- =1(n(lllgI'+I!J+gln 111/+ gil )1*

~ I(n 11/11,1/ + glll)1 *

for all g E MO. Taking the infimum over g, we obtain II/II ~
I(n III/III, Iii/ + MOIII )1 *. Since M satisfies the q-ball property in (X, 111·111)
we have that MOsatisfies the same in (X*, 111·11 l [24, Theorem 3]. Thus

Ilfll ~ l(ndl(O, PM0(f)) + n 111/ + MOl';, :11/ + MOil )1 *

= l(d(O, PM0(f)), ;If + MOII)I * ,
as required.

( <=) This part of the Theorem is more difficult and is broken into
several steps.

/>.10 h.' '-_'
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First note that, by Proposition 1.5, we need to consider only the case
dim(MO) = I, for if MO is a 1·1 * - -proximinal subspace of x* we apply the
above result on quotients and find that MO;yO is a 1·1 * -proximinal sub
space of X*/Yo~ Y*, for any closed subspace Y of X containing M. We
apply this with Y = M + Kx for arbitrary x E X and we are in the one
dimensional case which we suppose to be solved. So we obtain that M is
a I'I-proximinal subspace of M + Kx for all x E X, and this is just what we
need.

If 1·1*- = 1·1 +* is not of type 1, then MO is a I·I-*-summand in X, and
1·1 + is not of cotype OC'. From [19] it follows that M is a 1·1 + -summand
in X, and by [20, Theorem 2.1] it must be 1·1 + -proximinal. But I· i + =

1·1 = 1·1, because n* + n = n*( I-I - ) = 0, and thus Mis I·I-proximinal.
So we assume that 1·1 * is of type 1 and that MO is one-dimensional.

Thus MO = Kg for some g E X* with II gl: = 1. An application of
Corollary 2.6 shows that M O satisfies the I ~-ball property in X*, when the
latter is normed by

II/III = max{PM0(f), n 11/+ MOil}.

This uses the fact that n( \.\ * - ) = n( \.\). Our next task is to establish that
Iii· III is a dual norm on X*. This is the deepest point in the proof.

Applying Lemma 2.11, together with [1, Theorems 3.4 and 5.1], we
obtain

V(g,f) = {F(f):FEX**, IIPI =F(g)= I}

= {j(X):XE X, IIxll = g(x) = 1} VIE X*.

Now it is a matter of using straightforward calculations to verify that the
closed unit ball for the norm II' ·Iil is w*-closed. Then I!I· ill is the dual norm
of an equivalent norm on X which we denote also by II -III. By [24,
Theorem 3] M satisfies the Ii-ball property in (X, Iii· III ). Now we apply
Proposition 2.8 to obtain yet another norm Ii ·110 on X, such that M is a
I'I-proximinal subspace of (X, I' ·110)' The proof concludes by showing that
II ·11 = II ·110' To this end we use the defining formula for II ·110, that is,

Ilxll o = I( Illxlll, ~ Illx + MIII)I +

As in the proof of the "only if" part of the Theorem, we can dualize to
obtain

11/110 = I(d(O, PM0(f)), 11/ + MOI:)I * = II/II

for all / E X*. I
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How abundant are subspaces which are absolutely proximinal? In view
of Proposition 2.7, this is essentially the same as asking what examples are
known of subspaces with the I ~-ball property. Of course all M-ideals and
L-summands have this property, but we are interested in finding more
general examples. Every subalgebra of CR(K) (where K is a compact
Hausdorff space) has the I ~-ball property, but this is not true of those of
CdK) [23, Proposition 2.5]. (However. self-adjoint subalgebras of CdK)
are U-proximinal [9, Proposition 10].) Apart from the "easy" examples of
M-ideals and L-summands, examples of subspaces of complex Banach
spaces having th~ I ~-ball property seem to be very rare.

Until recently only one example was known; K(fd has the
1~-ball property in B(ld, for either scalar field [23, Proposition 2.8].
Several other examples have now appeared [25], some of them closely
related to this one.

In this section, we show that such examples are most abundan:. In fact
every complex Banach space has the 1~-ball property in some superspace,
in a nontrivial way. We present the results in a manner which is inde
pendent of the scalar field, since this result is also of some interest for real
Banach spaces.

For sets A and B in some Banach space, we write A ~ B to mean that
the two sets have the same closure and the same interior. Given r> 0, let
us say that a set S c K is r-balanceable if there is another set T c K with
S+ T ~ {i. E K: li.1 :::;; r}. This property is not very interesting if K = R.

LEMMA 3.1. Let M = Ku he a one-dimensional subspace (~l X with the
I ~-hall property. Assume Ilull = I, and write P,u(x) = K(x) u, where
K(x)c K. Then,for all XEX, K(x)- V(x) is the hall B(O. d(x, M)) in K.

Proof We abbreviate V(u, x) by writing V(x). By Lemma 2.1 we have

M"(x) = inf{M"(y): yE P,\1(X)} + d(x, M)

= inf{ re i.:i. E K(x)} +d(x, M),

that is,

maxi re J.l :/1 E V(x) - K(x)} = d(x, M).

So the compact convex sets V(x) - K(x) and BK (0, d(x, M)) have the same
support mapping. I

THEOREM 3.2. Let Y he a real or complex Banach space and K a closed
convex suhset. Then the followinx are equivalent.
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(i) For all f E Y*,f(K) is Ilfll-halanceahle.

(ii) There exist a Banach space X containing Y, an element e E X with
d(e, Y)= 1 such that Y has the 1!-hall property in X, and P1·(e)=K.

Proof (i)=>(ii) Given any fE y* with Ilfll = 1, we can find a set
Sr c K with f( K) - Sr ~ B(O, 1). Let X be the vector space Y Ef; Ke, and
define

Ily+..tell=max{i)·i, sup If(y)+XSrl}.
I'll ~ I

This is obviously a norm on X which coincides with the original norm on
Y. Clearly II y - ell ~ 1 for all y E Y, and

'Iy - ell = 1¢> fry) - sr ~ B K ,

¢> fry) Ef(K),

¢>yEK.

VfE B(O, 1),

VfE Y*,

Thus Py(e)=K, whence d(O, P(y+;.e))=d(y, -;.K) and d(y+,te, Y)=

IAI·
In order for us to establish L-proximinality, it is clearly sufficient to

check that II y + ,tell = d(O, P( y + i.e)) + d( y + i.e, Y), whenever y E Y and
i. = - 1. Thus we must establish the identity

max{ 1, sup If(y) - Sri} = dry, K) + 1.
1!.f!I - 1

This is clear if y E K. Given y ~ K, we can certainly find an f E y* with
Ilfll = 1 and inf ref(K) - fry) = dry, K). But re(f(K) - Sr) ~ (-1, 1), and
so

infref(K)-supreS/= -1.

Thus

sup re(Sr - fry)) = 1+ infref(K) - fry) = dry, K) + 1

and
Ily - ell ~ ISr - f(y)1 ~ dry, K) + 1.

The reverse inequality follows easily from the triangle inequality, so the
proof is complete.

(ii)=>(i) FixfE y* with Ilfll = 1, and put M=kerf Then YIM is a
one-dimensional subspace of XIM, with the 1!-ball property. Lemma 1.3
then tells us that
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where we have made use of the natural isomorphism between Y/M and
the scalar field. The previous lemma now ensures that f(K) is
I-balanceable. I

For real Banach spaces, a simpler proof of Theorem 3.2 is available.
Note that hypothesis (i) is always satisfied. To establish (ii), we turn
X = YEB Re into a Banach space by defining I: y - J.e II = 1;.1 + d( y, ;.K). It is
easy to check that this defines a norm under which Y is L-proximinal in
X. This argument does not work for complex scalars, since the term
d(y, AK) might not be subadditive.

Recall that if Y is an M-ideal (respectively, an L-summand) in X and
x E X\ Y, then the linear span of P y(x) is all of Y (respectively one-dimen
sional). The next result shows that there are abundant examples of
absolutely proximinal subspaces with neither of the above properties.

Let us say that a subset S of a Banach space has constant width II' if
S - S ~ B( 0, w). Clearly every ball has constant width, but there are asym
metric examples, the most famous of which is the Reuleaux triangle. This
is the intersection, in the euclidean plane, of three balls of radius w, whose
vertices form an equilateral triangle of side length 11'.

COROLLARY 3.3. Let X he any Banach space, M any closed suhspace
whose dimension over the reals is at least two, and 1·1 an absolute norm of
type 1 and not of cotype 00. Then there is a Banach space Y containing X
and a point e E Y, such that X is I·I-proximinal in Y and P x(e) is not
symmetric and its linear span equals M.

Proof Choose subspaces E and F of M such that M = EEB F and F has
dimension one/two, depending on whether the scalars are complex/real. Let
S be a Reuleaux triangle, of width ~, in F. Then K = ~ B 1'. + S certainly has
the property that f(K) is balanceable, for all f E X*. Theorem 3.2
establishes the result in the case 1·1 = L, and the general statement then
follows from Theorem 2.9. I

It is natural to ask which subsets of Care balanceable. Clearly every set
of constant width is balanceable, and it might be conjectured that the
converse is true. The following example shows this is not so.

EXAMPLE 3.4. Let a square be given in C. Determine four points
x I' ... , X 4 inside the square and r > 0, such that for each i, two adjacent ver
tices of the square lie on the boundary of B(xi , r) and the arc joining them
subtends an angle of rr/4. Put S= ni~ I B(xi , r), and let T be the body
obtained from S by a rotation of rr/4. It is easily checked that S + T is a
ball of radius r. Being symmetric, S does not have constant width.
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4. INTERIOR POI~TS OF P(X)

In this section, we define a new property of subspaces, much weaker than
I·I-proximinality, and use it to establish some estimates for the radii of
balls contained in P,w(x). This generalizes somewhat similar estimates
obtained by Harmand [12] for the special case of M-ideals.

Given an absolute norm 1·1, let us say that M has the I· I-property if, for
all x EX, Ilxl: = I(p,w(x), eI(x, M))I.

This property is quite weak. One can easily check that every Banach
space has the M-property in its bidual, and so the M-property does not
even imply proximinality. Nevertheless, it is a useful property for us to
consider, as the remainder of this section shows.

PROPOSITION 4.1. (i) Given any absolute norm 1·1, el'ery I·I-proximinal
suhspace has the 1·1 + -property.

(ii) If 1·1 is an ahsolute norm not of type I. then erery I· I-summand
has the I· I-property.

(iii) If 1·1 is a type I absolute norm, then no nontrivial suhspace of any
Banach space has the I· I-property.

Proof (i) This is just a restatement of Proposition 2.10. We remark
that 1·1 + is never a type I norm, i.e., that n( 1·1 + ) = 0 for any absolute
norm 1·1.

(ii) Every '·I-summand is I·: -proximinal, by [20], and so has
1·1 - + -property. But 1·1' + = 1·1 " in general, and 1·1 t = 1·1 when
n(I·I)=O.

(iii) If M# {O} has the I·I-property in X, let us choose UEM
with Ilull = 1. For any x E X and ex E R +, we have Ilu +:xxll =

I(PM(U + :xx), :xd(x, M) )1. Computing right-hand derivatives at the origin,
as in the proof of Lemma 2.1, we obtain the identity MU(x) = MU(x) +
nd(it, M). Thus n = 0, unless M = X. I

Let us remark that the proof of Lemma 2.11 used only the fact that M
had the 1·1 + -property in X, not the full strength of I·I-proximinality.

COROLLARY 4.2. If a Banach space is ahsolutely proximinal in its bidual,
then it has the 1~-ball property in its bidual.

Proof If X is I·I-proximinal in X**, then IIF:I = I(Px(F), d(F, X))I +

for all FE X**. But P;..-(F) = IIFII by the Hahn-Banach and Bishop-Phelps
Theorems [19, Lemma 1.16]. So l(a,b)l+ =a whenever O~h~a. This
easily implies that 1·1'" = M. Since 1·1 is not of cotype 00, by Proposi
tion 1.6, we must have 1·1 = L. In other words, X has the I1-ball property
in X**. I
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For Banach spaces which are absolute subspaces in their biduals,
much more is known [6]. There are many Banach spaces which are
M-ideals in their own biduals. For example, every subspace of the space
of compact operators K(lp,lq), for I <p:::;q<oo, has this property [13,
Example 3.3(a) and Theorem 3.4]. It is well known that every L,(p) space
is an L-summand in its own bidual, as is the predual of every von
Neumann algebra [22, Theorem 3]. It follows from [23, Corollary 2.3 ]
that every CR(K) has the I !-ball property in its bidual. It would be inter
esting to have some more examples of Banach spaces which are absolutely
proximinal in their biduals.

There is little point in defining an f-property in the manner of Section I.
If we define f on the positive quadrant by f(a, h) = a for 0:::; b:::; a, and
arbitrarily for b> a ~ 0, then every Banach space would have the
f-property in its bidual. Thus there are no uniqueness results analogous to
Lemma 1.2 and Proposition 1.6.

Given Me X, let us define two indices

,,(X, M) = max{ K:K Ilxll :::; PM(X) for all x E X}

and
J1(X, M)=sup{v(Y, M):Mc YS;X}.

Obviously 0:::; v(X, M):::; J.L(X, M):::; I, and v(X, M) = J1(X, M) whenever M
is a hyperplane in X. Also J.L(X**, X) = v(XU, X) = I for every Banach
space X. On the other hand, equality is not usual. If A is a noncom
mutative, unital C*-algebra, then v(A, CI) =! but J1(A, CI) = 1. This
follows, for example, from [7, Theorem 3].

LEMMA 4.3. Let M have the I· I-property in X and x E X. Then

(i) for mE M, we have me PM(X)<o>PM(x-m):::;n*d(x, M),

(ii) O¢PM(X)=PM(x)~n* Ilxll,
(iii) if J1(X, M) < n*, then M is proximinal in X.

Proof (i) is clear from the identity

!(
PM(X-m) )111m-xl, =d(x, M) d(x, M) ,I .

(ii) If d(x, M) < I!xll and PM(X) < n* Ilxll we obtain the contra
diction

Ilxll = I(PM(X), d(x, M))I < I(n* Ilx!l, Ilxll)1 = Ilxll.

(iii) Put Y = M E9 Kx. (We assume that x ¢ M, as otherwise PM(X) is
obviously nonempty.) Since v( Y, M) < n*, we can find y E Y with PM( Y) <
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n* Ilyli. Clearly y¢M, so xEMEf)Ky. By (ii), OEP~(y), whence
P~(x)#0· I

We denote by 'itS) the inner radius of a set S, i.e., the supremum of
those real numbers , for which S contains some ball of radius r. It is
notationally convenient to adopt the convention that r,(0) = O.

THEOREM 4.4. Suppose M has the I . I-property in X. Then, for all x EX,

r;(P,\f(X)) ~ (n* - J1(X, M)) d(x, M) ~o.

Proof Given M c Y~ X and XE nM, we have

Ix-ml = I(PM(x-m). d(x, M))I ~ l(v(Y, M) Ilx-mll, d(x, M))I

for all mE M. Taking the infimum yields

d(x, M) ~ I(v( Y, M) d(x, M), d(x, M))I,

and so v( Y, M) ~ n*. The second inequality follows immediately.
The proof of the first inequality requires more delicacy. First we

strengthen the inequality of Lemma 4.3(ii) to

PM(X) ~ n* Ilxll - r,(P~(x)).

This is clear if O¢PM(x), so assume that OEP,\f(X). Given c>O, choose
mEM\P~(x) with Imll <d(O, M\P~(x))+c.Then, since O¢P~(x-m),

P.~f(X) ~ PM(X - m) - p.~f(m)

~ n* Ilx - ml: - Ilml

> n*d(x, M) - d(O, M\P.I1 (x)) - f.

~ n* Ilxll- r;(PM(x)) - f;,

as required.
Thus for any mE M, x rI M, :c E K,

Fixing x E X\M, we obtain
* r;(PM(x))

J1(X, M)~v(MEBKx, M)~n - d(x, M) ,

thereby establishing the first inequality. (The case x EM is clear.) I
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THEOREM 4.5. Let M have the I· I-property in X and x EX. Then

r,(Pu(x)) ~ (n* - v(X, M)) d(x, M).
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Proof Suppose that B(a, r) c:; Pu(x). Then, for any f E D(M) =
Ului I D(M, u),

mEM, Ilmil <r=a-mEPM(x)

=PM(a-x-m)~n*d(x,M)

= If(a-x)-f(m)1 ~n*d(x, M).

Hence, for any fED(M), If(a-x)1 +r~n*d(x,M), i.e., PM(a-x)+r~
n*d(x,M). But PM(a-x)~v(X,M)l.a-xl=v(X,M)d(x,M), so r~

(n* - v(X, M)) d(x, M). I

COROLLARY 4.6. Let M he a subspace of X with p(X, M) = v(X, M). (In
particular, suppose that M is a hyperplane in X.)

(i) IfM has the I·I-property in X, then r;(PM(x))=(n*-v(X,M))
d(x, M) for all x E X.

(ii) {( M is I·I-proximinal in X, then r;(Pu(.~))=(n-v(X,M))

d(x, M) for all x EX.

The hypotheses of Corollary 4.6 also apply when X = M**, but this
situation is not very interesting. For the special case of M-ideals,
Corollary 4.6 was first proved by Harmand ([ 12, Kapitel II J or [3,
Sect. 5J). He defined an index for M-ideals, called the grade, which is equal
to our v(X, M) in this case. He showed that v(X, M)= l-r;(PM(x)) when
ever M is an M-ideal of codimension one in X, and d(x, M) = I. (Since
every M-ideal has the M-property, n* = I.)

Holmes et al. [14, Sect. 4 J noted that every M-summand M of X satisfies
int M - f- 0, and that in certain classical examples of M-ideals, we had
int M" = 0. This led them to ask whether every proper M-ideal has the
property that its metric complement has an empty interior. There are
several ways to see that this is not so.

For a counterexample in a classical Banach space, let K be a compact,
Hausdorff space, and Ko a closed subset of K. Then M = {.f E C(K):
f(Ko)= O} is easily checked to be an M-ideal in C(K), which is proper
whenever Ko is not c1open. It follows from Urysohn's Lemma that M ~ has
nonempty interior (in C(K)) if and only if Ko has nonempty interior (in K).
We are indebted to D. Werner for bringing this result to our attention.

More generally, it is observed in [3, Sect. 5J that the grade of an M-ideal
can always be decreased. More precisely, this means that if M is an M-ideal
in X and :x < v(X, M), then there is a Banach space X, containing M as an
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M-ideal, with v(Xx ' M) =~. This shows that ri(P M(X) can be increased,
which is tantamount to adding interior points to M ~, while preserving the
proper M-idealness. In fact, it follows from [2, Proposition 2.2] that
v(X, M) = °if and only if M is an M-summand in X. Thus the properness
of M-ideals is characterized by "r;(P\j(x)) < d(x, M) for some x E X," not
by "r,(PM(x»)=O, for all xrt M."

We use these ideas to make some remarks about proper semi-M-ideals.
It is now high time for us to define semi-ideals and absolute subspaces.
Recall that M is said to be a semi-I·,-summand of X if there is a mapping
n from X onto M satisfying the identities

n().x + n(y)) = i.n(x) + n(y)

and

Ilxll = 1(lln(x)ll, Ilx-n(x)II)I·

A semi-I' I-ideal is a closed subspace M of X such that MO is a semi-I·' *
summand of X*. Finally M is said to be a '·I-subspace of X (or simply an
absolute subspace if I·' need not be emphasized) when it is a semi-I' I-ideal
of M + Kx for all x EX. Semi-I' I-ideals (hence I·J-ideals and I· I-summands )
and semi-I . I-summands (even semi-I ·I-idealoids [19]) are always I·I-sub
spaces. On the other hand, every I· I-subspace is a 1·1- -proximinal
subspace [20, Theorem 2.1] and hence has the 1·1 + -property. (Note that
1·1 - + = 1·1 ~ for any absolute norm.) A semi-M-ideal is called proper if it
is not an M-summand.

PROPOSITION 4.7. If M is a proper semi-M-ideal of codimension one in X,
then, for all x E X,

r,(P.\1(x») = 1(1- v(X, M) diam P\j(X).

If in addition X is n-dimensional (n < OCJ) then 0 < v(X, M) ~ I - 21n, and
these estimates are the best possible.

Proof It is well known [17, Theorem 1.2] that P M(X) - P M(X) ~
B(O, 2d(x, M). The first statement then follows from Corollary 4.6. It is a
well-known consequence of Helly's Theorem that, in any n-dimensional
normed space, any set of constant width w contains a ball of radius
w/(n + 1). Thus r;(P M(X» ~ 2d(x, M)/n. Propriety forces r,(PM(X) < 1.

The renorming process of Harmand shows that ri(PM(x») can be
arbitrarily close to 1. (Of course equality holds precisely when M is an
M-summand in x.) In the other direction, the classical example X=ll(n)
and M={(x 1 , ...,X,,):x 1 + +xn=O} shows that r i (P.\1(x»=2/n is
possible, when x=(I/n)(l, I, , I). I



ABSOLCTELY PROXIMINAL SUBSPACES 71

We finish with a couple of results about absolute subspaces. For further
information about absolute subspaces we refer to [6] and [20].

PROPOSITION 4.8. For a fixed absolute norm i ·1, M is a semi
I· I-summand of X !f and only if M is a I· i-subspace of X with p(X, M) = n.

Proof Necessity is clear from [20, Theorem 1.7]. For sufficiency, fix
x EX. Since M has the 1·1 t -property,

ri(P,\f(x)) ~ (n*(I·1 +) - p(X, M)) d(x, M)

=(n*(I·I· )-n)d(x,M)

=n*d(x, M)

= ~ diam(P\((x)).

The last equality follows from [20, Theorem 2.1]. It is clear that PM(x) is
a ball, so an application of [20, CorolIary 2.2] shows that M is a
semi-I· i-summand. I

Our last result is an easy consequence of Corollary 4.6( i) and the
arguments used above.

COROLLARY 4.9. If M is an I· I-subspace of X, with ,u(X, M) == v(X, M),
then for all x E X, we have 2n*ri(PM(x)) = (n* + n - v(X, M)) diam P\1(x).

In this regard, it is pretty obvious that if M is a proximinal subspace of
codimension one in X, then diam PM(x)/d(x, M) and r;(PM(x))/d(x, M)
are both independent of x E X\M. If M is a I· i-subspace, of any codimen
sion, then diam PM(x)/d(x, M) == 2n* for all x ¢ M [20, Theorem 2.1], but
r;(P M (.\:) )/d(x, M) may vary with x. Finally, the example R( 1, 1,0) c I x (3)
shows that the 1~·ball property is not sufficient to guarantee that
diam PM(x)/d(x, M) is constant.
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